Skip to content

Узип в частном доме

Узип в частном доме

УЗИП или реле напряжения

Устанавливать их начали все и везде. Грубо говоря оно защищает вас от того, чтобы в дом не пошло 380В вместо 220В. При этом не нужно думать, что повышенное напряжение попадает в проводку по причине недобросовестного электрика.

Вполне возможны природные явления, не зависящие от квалификации электромонтеров. Банально упало дерево и оборвало нулевой провод.

Также не забывайте, что любая ВЛ устаревает. И даже то, что к вашему дому подвели новую линию СИПом, а в доме у вас смонтировано все по правилам, не дает гарантии что все хорошо на самой питающей трансформаторной подстанции – КТП.

Там также может окислиться ноль на шинке или отгореть контакт на шпильке трансформатора. Никто от этого не застрахован.

Именно поэтому все новые электрощитки уже не собираются без УЗМ или РН различных модификаций.

Что же касается устройств для защиты от импульсных перенапряжений, или сокращенно УЗИП, то у большинства здесь появляются сомнения в необходимости их приобретения. А действительно ли они так нужны, и можно ли обойтись без них?

Подобные устройства появились достаточно давно, но до сих пор массово их устанавливать никто не спешит. Мало кто из рядовых потребителей понимает зачем они вообще нужны.

Первый вопрос, который у них возникает: ”Я же поставил реле напряжения от скачков, зачем мне еще какой-то УЗИП?”

Запомните, что УЗИП в первую очередь защищает от импульсов вызванных грозой. Здесь речь идет не о банальном повышении напряжения до 380В, а о мгновенном импульсе в несколько киловольт!

Никакое реле напряжения от этого не спасет, а скорее всего сгорит вместе со всем другим оборудованием. В то же самое время и УЗИП не защищает от малых перепадов в десятки вольт и даже в сотню.

Например устройства для монтажа в домашних щитках, собранные на варисторах, могут сработать только при достижении переменки до значений свыше 430 вольт.

Поэтому оба устройства РН и УЗИП дополняют друг друга.

Защита дома от грозы

Гроза это стихийное явление и просчитать его до сих пор не особо получается. При этом молнии вовсе не обязательно попадать прямо в линию электропередач. Достаточно ударить рядышком с ней.

Даже такой грозовой разряд вызывает повышение напряжения в сети до нескольких киловольт. Кроме выхода из строя оборудования это еще чревато и развитием пожара.

Даже когда молния ударяет относительно далеко от ВЛ, в сетях возникают импульсные скачки, которые выводят из строя электронные компоненты домашней техники. Современный электронный счетчик с его начинкой, тоже может пострадать от этого импульса.

Общая длина проводов и кабелей в частном доме или коттедже достигает нескольких километров.

Сюда входят как силовые цепи так и слаботочка:

  • интернет
  • TV
  • видеонаблюдение
  • охранная сигнализация

Все эти провода принимают на себя последствия грозового удара. То есть, все ваши километры проводки получают гигантскую наводку, от которой не спасет никакое реле напряжения.

Единственное что поможет и защитит всю аппаратуру, стоимостью несколько сотен тысяч, это маленькая коробочка называемая УЗИП.

Монтируют их преимущественно в коттеджах, а не в квартирах многоэтажек, где подводка в дом выполнена подземным кабелем. Однако не забывайте, что если ваше ТП питается не по кабельной линии 6-10кв, а воздушной ВЛ или ВЛЗ (СИП-3), то влияние грозы на среднем напряжении, также может отразиться и на стороне 0,4кв.

Поэтому не удивляйтесь, когда в грозу в вашей многоэтажке, у многих соседей одновременно выходят из строя WiFi роутеры, радиотелефоны, телевизоры и другая электронная аппаратура.

Молния может ударить в ЛЭП за несколько километров от вашего дома, а импульс все равно прилетит к вам в розетку. Поэтому не смотря на их стоимость, задуматься о покупке УЗИП нужно всем потребителям электричества.

Цена качественных моделей от Шнайдер Электрик или ABB составляет примерно 2-5% от общей стоимости черновой электрики и средней комплектации распредщитка. В общей сумме это вовсе не такие огромные деньги.

Классы УЗИП

На сегодняшний день все устройства от импульсных перенапряжений делятся на три класса. И каждый из них выполняет свою роль.

Модуль первого класса гасит основной импульс, он устанавливается на главном вводном щите.

После погашения самого большого перенапряжения, остаточный импульс принимает на себя УЗИП 2 класса. Он монтируется в распределительном щитке дома.

Если у вас не будет устройства I класса, высока вероятность что весь удар воспримет на себя модуль II. А это может для него весьма печально закончится.

Поэтому некоторые электрики даже отговаривают заказчиков ставить импульсную защиту. Мотивируя это тем, что раз вы не можете обеспечить первый уровень, то не стоит вообще на это тратить денег. Толку не будет.

Однако давайте посмотрим, что говорит об этом не знакомый электрик, а ведущая фирма по системам грозозащиты Citel:

То есть в тексте прямо сказано, класс II монтируется либо после класса 1, либо КАК САМОСТОЯТЕЛЬНОЕ УСТРОЙСТВО.

Третий модуль защищает уже непосредственно конкретного потребителя.

Если у вас нет желания выстраивать всю эту трехступенчатую защиту, приобретайте УЗИП, которые изначально идут с расчетом работы в трех зонах 1+2+3 или 2+3.

Такие модели тоже выпускаются. И будут наиболее универсальным решением для применения в частных домах. Однако стоимость их конечно отпугнет многих.

Схема электрощита с УЗИП

Схема качественно укомплектованного с точки зрения защиты от всех скачков и перепадов напряжения распределительного щита, должна выглядеть примерно следующим образом.

На вводе перед счетчиком — вводной автоматический выключатель, защищающий прибор учета и цепи внутри самого щитка. Далее счетчик.

Между счетчиком и вводным автоматом — УЗИП со своей защитой. Электроснабжающая организация конечно может запретить такой монтаж. Но вы можете обосновать это необходимостью защиты от перенапряжения и самого счетчика.

В этом случае потребуется смонтировать всю схемку с аппаратами в отдельном боксе под пломбой, дабы предотвратить свободный доступ к оголенным токоведущим частям до прибора учета.

Однако здесь остро встанет вопрос замены сработавшего модуля и срыва пломб. Поэтому согласовывайте все эти моменты заранее.

После прибора учета находятся:

  • реле напряжения УЗМ-51 или аналог
  • УЗО 100-300мА – защита от пожара
  • УЗО или дифф.автоматы 10-30мА – защита человека от токов утечки
  • простые модульные автоматы

Если с привычными компонентами при комплектации такого щитка вопросов не возникает, то на что же нужно обратить внимание при выборе УЗИП?

На температуру эксплуатации. Большинство электронных видов рассчитано на работу при окружающей температуре до -25С. Поэтому монтировать их в уличных щитках не рекомендуется.

Второй важный момент это схемы подключения. Производители могут выпускать разные модели для применения в различных системах заземления.

Например, использовать одни и те же УЗИП для систем TN-C или TT и TN-S уже не получится. Корректной работы от таких устройств вы не добьетесь.

Схемы подключения

Вот основные схемы подключения УЗИП в зависимости от исполнения систем заземления на примере моделей от Schneider Electric. Схема подключения однофазного УЗИП в системе TT или TN-S:

Здесь самое главное не перепутать место подключения вставного картриджа N-PE. Если воткнете его на фазу, создадите короткое замыкание.

Схема трехфазного УЗИП в системе TT или TN-S:

Схема подключения 3-х фазного устройства в системе TN-C:

На что нужно обратить внимание? Помимо правильного подключения нулевого и фазного проводников немаловажную роль играет длина этих самых проводов.

От точки подключения в клемме устройства до заземляющей шинки, суммарная длина проводников должны быть не более 50см!

А вот подобные схемы для УЗИП от ABB OVR. Однофазный вариант:

Трехфазная схема:

Давайте пройдемся по некоторым схемкам отдельно. В схеме TN-C, где мы имеем совмещенные защитный и нулевой проводники, наиболее распространенный вариант решения защиты – установка УЗИП между фазой и землей.

Каждая фаза подключается через самостоятельное устройство и срабатывает независимо от других.

В варианте сети TN-S, где уже произошло разделение нейтрального и защитного проводника, схема похожа, однако здесь монтируется еще дополнительный модуль между нулем и землей. Фактически на него и сваливается весь основной удар.

Именно поэтому при выборе и подключении варианта УЗИП N-PE, указываются отдельные характеристики по импульсному току. И они обычно больше, чем значения по фазному.
Помимо этого не забывайте, что защита от грозы это не только правильно подобранный УЗИП. Это целый комплекс мероприятий.

Их можно использовать как с применением молниезащиты на крыше дома, так и без нее.

Особое внимание стоит уделить качественному контуру заземления. Одного уголка или штыря забитого в землю на глубину 2 метра здесь будет явно не достаточно. Хорошее сопротивление заземления должно составлять 4 Ом.

Автоматы или предохранители перед УЗИП

Чтобы сохранить в доме бесперебойное электроснабжение, необходимо также установить автоматический выключатель, который будет отключать узип. Установка этого автомата обусловлена также тем, что в момент отвода импульса, возникает так называемый сопровождающий ток.

Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.

В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.

Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.

Запомните, что этот автомат защищает в первую очередь не разрядник, а именно вашу сеть.

При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.

Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.

Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.



Поэтому устанавливать УЗИП после автомата, гораздо хуже, чем после предохранителей.

Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.

Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.

Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.

Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.

Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.

Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.

Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:

Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.

И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.

Для чего предназначены внутренние устройства молниезащиты и как они работают при разрядах

Стихийное возникновение молнии происходит внезапно, создавая огромные разрушения.

Защитить дом от него позволяет внешняя молниезащита, состоящая из молниеприемника, распложенного над крышей, а также молниеотвода и контура заземления.

Ток разряда, проникающий кратковременным импульсом по подготовленной цепи, имеет очень большую величину. Он наводит в близкорасположенной проводке здания и токопроводящих частях перенапряжения, способные сжечь изоляцию, повредить бытовые приборы.

Предотвратить опасные последствия грозового разряда предназначены внутренние устройства молниезащиты, представляющие собой комплекс технических устройств и приборов на основе модулей УЗИП с подключением их к системе заземления.

Они надежно работают не только при непосредственном ударе молнии по дому, но и гасят разряды, попадающие в:

  1. питающую ЛЭП;
  2. близлежащие деревья и строения;
  3. почву, расположенную рядом со зданием.

Если с ударом по ЛЭП обычно вопросов не возникает, то в последних двух случаях перенапряжение способно импульсом проникнуть в домашнюю проводку по контуру земли, трубам водопровода, канализации, другим металлическим магистралям, как показано на самой первой картинке

Работа внутренней молниезащиты происходит за счет подключения проникшего высоковольтного импульса на специально подобранный разрядник или электронный элемент — варистор.

Он включается на разность двух потенциалов и для обычного напряжения обладает очень большим сопротивлением, когда токи через него ограничиваются, не превышают нескольких миллиампер.

При попадании на схему варистора аварийный импульс открывает полупроводниковый переход, замыкая его накоротко. Через него начинает стекать опасный потенциал на защитное заземление.

После варистора опасное напряжение значительно ограничивается. На базе этих электронных компонентов созданы современные модули защиты — УЗИП.

Устройство защиты от импульсных перенапряжений: как правильно выбрать и установить модуль

Представьте картинку, когда накопленная энергия статического электричества между движущимися на больших расстояниях облаками разряжается молниеносным ударом по зданию или питающей его ЛЭП.

Усредненная форма импульса тока приведена ниже. Она вначале круто возрастает примерно за 10 миллисекунд, а затем, достигнув своего апогея, начинает плавно снижаться. Причем спад до середины максимального значения тока происходит через 350 мс и продолжается дальше до нуля.

Этот импульс грозового разряда создает перенапряжение в сети, которое примерно повторяет форму тока, но может отличаться за счет работы ограничителей перенапряжения, установленных на воздушной ЛЭП.

Форма такого импульса, обработанного разрядниками, показана чуть правее, а обычная синусоида частотой 50 герц для сравнения ниже.

Ограничители перенапряжения ЛЭП работают за счет пробивания калиброванного воздушного зазора повышенным импульсом разряда. В обычном состоянии его сопротивление исключает протекание токов от напряжения нормальной величины.

У высоковольтных линий электропередач ограничители имеют довольно внушительные размеры.

На воздушных ЛЭП 0,4 кВ их габариты значительно меньше. Они располагаются на опоре рядом с изоляторами.

Ограничители перенапряжения ВЛ способны погасить очень высокое напряжение разряда молнии только до 6 киловольт. Такой импульс имеет измененную форму нарастания и спада напряжения с характеристикой 8/20 мкс. Он поступает на вводные устройства вашего дома.

Защита перенапряжения ЛЭП его сильно урезала и преобразовала. Но этого явно недостаточно для обеспечения безопасности оборудования и жильцов.

Бытовая проводка 220/380 вольт выпускается с изоляцией, способной противостоять импульсам 1,5÷2,5 кВ. Все, что больше, ее пробивает. Поэтому требуется использовать дополнительное устройство защиты от импульсных перенапряжений для частного дома.

Ассортимент таких конструкций обширен. Их необходимо уметь правильно выбирать и монтировать.

УЗИП для сети 0,4 кВ выпускаются на 2 режима возможной аварии для гашения:

  1. тока разряда с формой 10/350мкс, который не претерпел изменений от ОПН воздушной ЛЭП;
  2. импульса перенапряжения с характеристикой 8/20мкс.

По этим факторам удобно при выборе УЗИП пользоваться алгоритмом, который я показал картинкой ниже.

Однако следует представлять, что практически нет устройств, способных разово погасить импульс 6 киловольт до безопасной для бытовой проводки величины в 1,5 кВ.

Этот процесс происходит в три этапа. Под каждый из них используется свой класс УЗИП, хотя есть небольшие исключения из этого правила.

Модули класса 1 способны снизить импульс перенапряжения с 6 до 4 кВ, который проникает:

  • после ограничителей ЛЭП;
  • или наводится от тока разряда молнии, стекающего по молниеотводу;
  • либо ее удара в близко расположенные строения, деревья, почву.

УЗИП класса 1 устанавливают во вводном щиту здания внутри отдельной герметичной пожаробезопасной ячейки. Пренебрегать этим правилом опасно.

При монтаже следует правильно прокладывать защищаемые кабели. Они не должны пересекаться с отводом аварийных токов на контур земли и приходящими, не подвергнутыми защите магистралями.

От сверхтоков модули спасают силовыми предохранителями с плавкими вставками.

Автоматические выключатели для этих целей не приспособлены. Их контакты не выдерживают создаваемые импульсные перегрузки. Они привариваются, а повреждение продолжает развиваться.

Следующий класс УЗИП №2 снижает импульс перенапряжения с четырех до 2,5 кВ. Его ставят в следующем по иерархии распределительном щите, например, квартирном. Он дополняет работу предшествующего модуля, но может использоваться и автономно.

Класс №3 устройства защиты от импульсных перенапряжений может выполняться модулями, устанавливаемыми на DIN-рейку или комплектами, встраиваемыми в бытовые приборы, удлинители, сетевые фильтры.

УЗИП класса 3 способен обеспечивать безопасность только после срабатывания защиты класса №2. Он ставится последовательно за ней потому, что от 4-х киловольт сгорает.

Производители побеспокоились о сложности выбора правильной конструкции УЗИП и предлагают комплексное решение этого вопроса общим модулем, называемым 1+2+3.

Он ставится в отдельном боксе. Однако, цена такой разработки не всем по карману.

Защита от импульсного перенапряжения: частный дом с однофазным питанием

Монтаж электропроводки в частном доме, особенно выполненном из древесины и горючих материалов, требует тщательного соблюдения правил электрической безопасности.

Необходимо учесть, что здание может быть запитано по разным схемам заземления:

  • типовой старой TN-C;
  • либо современной, более безопасной TN-S или ее модификациям.

Разберем оба случая.

Схема подключения УЗИП: 2 варианта по системе заземления TN-S

На картинке ниже представлена развернутая схема с защитой комбинированного класса 1+2, которое используется для установки после вводного автоматического выключателя.

Варистор ограничителя перенапряжения встроен в корпус модуля, защищает электрическую схему от прямых или удаленных атмосферных разрядов молний.

Традиционный для всех УЗИП сигнальный флажок имеет два цвета:

  1. зеленое положение свидетельствует об исправности устройства и готовности к работе;
  2. красное — о необходимости замены в случае срабатывания или перегорания.

Такой модуль может применяться во всех системах заземления, а не только TN-S. Он имеет 3 клеммы подключения:

  1. сверху слева L — фазный провод;
  2. сверху справа PE — защитный проводник заземления;
  3. снизу N — нулевой провод.

УЗИП защищает электросчетчик и все цепи после него.

На очередной схеме показан вариант использования защиты с УЗО. После него создается дополнительная шинка рабочего нуля N1, от которой запитаны все потребители квартиры.

Схема вроде понятна, вопросов не должно возникнуть.

Для дополнительных систем заземления TN-C-S и ТТ предлагаю к изучению и анализу еще две схемы. У них УЗИП монтируется тоже во вводном устройстве.

Цепи подключения счетчика, реле контроля напряжения РКН и УЗО, а также потребители подробно не показываю. Но принцип понятен: используется защитная шина PE.

А вот в старой системе заземления ее нет, за счет чего снижается надежность и безопасность. Но все же она осуществляет защиту, поэтому и рассматривается.

Схема подключения УЗИП по системе заземления TN-C

Отсутствие шины РЕ диктует необходимость подключения УЗИП только между потенциалами фазного провода и PEN. Других вариантов просто нет.

Слева показан способ монтажа защиты для однофазной проводки, а справа — трехфазной.

Импульс перенапряжения снимается по принципу создания искусственного короткого замыкания в питающей цепи.

Защита от импульсного перенапряжения: частный дом с трехфазным питанием

Разбираю принципы подключения УЗИП на примере разных систем заземления.

Схема подключения УЗИП для трехфазного питания дома по системе TN-S

Защита проводки возложена на:

  • трехполюсный вводной автоматический выключатель;
  • однополюсные и трехполюсные автоматы отходящих линий;
  • устройство защиты от импульсных перенапряжений комбинированного типа 1+2+3.

Учетом электроэнергии занимается трехфазный электросчетчик. После него в цепях рабочего нуля образована дополнительная шинка N1. От нее запитываются все потребители.

Шинки N и РЕ, модуль УЗИП подключены стандартным образом.

При раздельном использовании защит классов №1, 2, 3 следует распределять их по зонам I, II, III.

Проникновение импульсов перенапряжения со всех сторон потенциалов фаз, рабочего нуля и соединенного с контуром земли оборудования блокирует включение модулей между шинами фаз, нуля и РЕ.

Схема подключения УЗИП: 2 варианта для трехфазного питания дома по системе TN-C

В предлагаемой разработке показан не чистый вариант подключения защит под систему заземления TN-C, а рекомендуемая современными требованиями модификация перехода на TN-C-S с выполнением повторного заземления.

Проводник PEN по силовому кабелю от питающей трансформаторной подстанции подается на свою шинку, которая подключается перемычкой к сборке рабочего нуля и шине повторного заземления.

Трехполюсный УЗИП, включенный после вводного автомата, защищает электрический счетчик и все его цепи, включая УЗО, от импульсов перенапряжения. Напоминаю, что он должен монтироваться в отдельном несгораемом боксе.

При отсутствии повторного заземления нижняя клемма модуля УЗИП подключается на шину PEN проводника отдельной жилой, а проводка работает чисто по старой системе TN-C.

Еще одна методика снижения нарастающего фронта броска импульса перенапряжения показана ниже. Здесь работают специальные реактивные сопротивления — дросселя LL1-3 с индуктивностью от 6 до 15 микрогенри, подбираемые расчетным путем.

Они используются при близком расположении оборудования для создания небольшой задержки срабатывания защиты, необходимой по условиям селективности.

Их монтируют в отдельном защитном щитке совместно с УЗИП. Так проще выполнять настройки и периодические обслуживания, профилактические работы.

Считаю, что необходимо указать еще на один вариант использования ограничителей перенапряжения и разрядников, которым иногда пренебрегают владельцы сложной электронной техники.

В отдельных ситуациях, как было у меня в электротехнической лаборатории на подстанции 330 кВ. Настольный компьютер подвергался различным видам облучения электромагнитных полей с частотами низкого и высокого диапазонов. Это сказывалось на отображении информации и даже быстродействии.

Выход был найден за счет создания мощного экранирующего чехла и подключения его к отдельному функциональному заземлению.

Однако при ударе молнии в рядом расположенную почву или молниезащиту такой путь может стать источником опасности. Исправить ситуацию позволяет метод создания дополнительной гальванической развязки.

Ее создают подключением разрядника. У меня использовалась разработка компании Hakel, как показано на картинке выше.

3 главных ошибки электрика в схемах молниезащиты

Отвод случайного разряда молнии от здания и ликвидация опасных последствий перенапряжения — это сложная и ответственная техническая задача, требующая:

  1. тщательного инженерного расчета;
  2. надежного монтажа;
  3. своевременного профилактического обслуживания.

Три перечисленных пункта требуют профессиональных знаний и опыта, которыми обладает далеко не каждый специалист.

Отличает профессионала от других электриков не наличие диплома об образовании, количество сертификатов или положительных отзывов, а готовность взять на себя всю полноту материальной ответственности за проделанную работу и причиненный ущерб в случае допущения ошибки на любом вышеперечисленном этапе.

Расчет проекта молниезащиты

Он должен выполняться по двум направлениям:

  1. внешней схеме отвода тока разряда;
  2. внутренней ликвидации импульса перенапряжения с полным учетом местных условий.

На расчет конструкции влияют характеристики грунтов, форма и габариты здания, условия подключения электроэнергии и многие другие факторы.

Их требуется просчитать, смоделировать, подвергнуть испытаниям специализированными компьютерными программами и внести необходимые усовершенствования.

Но есть и другой путь — собрать доступную информацию самостоятельно, например, с интернета и рискнуть безопасностью дома и жильцов: вдруг пронесет. Грозы то бывают не каждый день, авось… (Так поступает большинство, причем часто по незнанию.)

Монтаж внутренней и внешней молниезащиты

Попробуйте ответить на простой вопрос: можно ли изготовить надежно работающую систему без точного проекта, учитывающего аварийные и эксплуатационные режимы?

А ведь так поступают многие владельцы домов. В итоге создаются контуры заземления с завышенным электрическим сопротивлением, ненадежные молниеотводы, что превращает задуманную защиту в ловушку молний, когда молниеприемник притягивает на себя грозовой разряд, а его энергия не отводится на потенциал земли, а прикладывается к зданию.

Ошибки монтажа внутренней молниезащиты ведут к выгоранию бытовой проводки, повреждению дорогого оборудования, бесполезной трате денег, времени.

Профилактическое обслуживание систем молниезащиты

Здесь надо учитывать, что любая техника не только морально изнашивается, но и естественно стареет.

Электрические характеристики грунта меняются в зависимости от погоды, сезона, влажности. Электронные защиты на УЗИП при срабатывании, как и их предохранители могут выгореть. Контактные соединения собранных цепочек со временем увеличивают сопротивление.

Все эти процессы требуется контролировать внешним и внутренним осмотром, выполнением электротехнических измерений точными специализированными приборами.

Внутри многоэтажного здания вопросами внутренней и внешней молниезащиты занимается эксплуатирующая организация ЖКХ со своими работниками. Владелец частного дома решает их самостоятельно и выполнить их обязан надежно и качественно привлечением специалистов лабораторий.

В статье я привел типовые схемы, показывающие как подключить УЗИП для частного дома и постарался кратко объяснить принципы их работы.

Источник: https://ElectrikBlog.ru/uzip-dlya-chastnogo-doma-skhemy-podklyucheniya/

Принцип действия и устройство

Принцип работы УЗИП заключается в применении варисторов – нелинейный элемент в виде полупроводникового резистора сопротивления от приложенного напряжения.

УЗИП имеет два вида защиты:

  • Несимметричный (синфазный) – при перенапряжении устройство направляет импульсы на землю (фаза – земля и нейтраль – земля);
  • Симметричный (дифференциальный) – при перенапряжении энергия направляется на другой активный проводник (фаза – фаза или фаза – нейтраль).

Чтобы лучше понять принцип работы УЗИП приведем небольшой пример.

Нормальное напряжение цепи 220 В, а при возникновении импульса в этой самой цепи напряжение резко поднимается, например, при ударе молнии. При резком скачке напряжения, в УЗИП уменьшается сопротивление, что приводит к короткому замыканию, которое в свою очередь приводит к срабатыванию автоматического выключателя и в последствии к отключению самой цепи. Таким образом обеспечивается защита электрооборудования от резких перепадов напряжения, не допуская протекания через него импульса высокого напряжения.

Разновидности УЗИП

Устройства защиты от импульсных перенапряжений бывают с одним и двумя вводами, и подразделяются на:

  • Коммутирующие;
  • Ограничивающие;
  • Комбинированные.

Коммутирующие защитные аппараты

Характерной особенностью коммутирующих устройств является высокое сопротивление, которое при возникновении сильного импульса в напряжении мгновенно падает до нуля. Принцип работы коммутирующих устройств основывается на разрядниках.

Ограничители сетевого перенапряжения (ОПН)

Для ограничителя сетевых напряжений также характерно высокое сопротивление. Его отличие от коммутирующего аппарата только в том, что снижение сопротивления происходит постепенно. ОПН основывается на работе варистора (резистора), который используется в его конструкции. Сопротивление варистора находится в нелинейной зависимости от воздействующего на него напряжения. При резком увеличении напряжения происходит также резкое увеличение силы тока, который проходит непосредственно через варистор и таким образом сглаживаются электрические импульсы, после чего ограничитель сетевого напряжения возвращается в первоначальное состояние.

Комбинированные УЗИП

УЗИП комбинированного типа объединяют в себе разрядники и варисторы, и могут выполнять как функцию разрядника так и ограничителя.

Существует всего три класса устройств по степени защиты:

  • Устройство I класса (категория перенапряжения IV) – защищает систему от прямых ударов молнии, и устанавливается в главном распределительном щите или в вводно-распределительном устройстве (ВРУ). Обязательно нужно использовать данное устройство, если здание находится на открытой местности и окружено множеством высоких деревьев, что увеличивает риск грозового воздействия.
  • Устройство II класса (категория перенапряжения III) – используется как дополнение к устройству I класса для защиты сети от коммутационного воздействия, т.е. от внутреннего перенапряжения сети. Устанавливается в распределительном щите.
  • Устройство III класса (категория перенапряжения II) – применяется для защиты от остаточных атмосферных и коммутационных перенапряжений, а также для устранения высокочастотных помех прошедших через устройство II класса. Проводится монтаж как в обычные розетки или разветвительные коробки, так и в сами электроприборы, которые необходимо обезопасить.

Классификация по степени разряда тока:

  • Класс В – разрядки воздушные или же газовые с током разряда от 45 до 60 кА. Устанавливаются на вводе в здание в главном щите или в вводно-распределительном устройстве.
  • Класс С – варисторные модули с токами разряда порядка 40 кА. Устанавливаются в дополнительных щитах.
  • Классы С и D применяются в тандеме в случае, если необходим подземный кабельный ввод.

ВАЖНО! Расстояние между УЗИП должно быть не меньше 10 метров по длине проводки.

Как выбрать УЗИП?

Первое, что нужно сделать при выборе УЗИП это определить систему заземления, которая используется в здании.

Система заземления бывает трех типов:

  • TN-S с одной фазой;
  • TN-S с тремя фазами;
  • TN-C или TN-C-S с тремя фазами.

Не менее важно обратить на выдерживаемую температуру при приобретении устройства. Большинство УЗИП рассчитано на работу при температуре до -25. Если в вашем регионе очень холодный климат, и зимы бывают суровыми, тогда электрощит не должен находиться на улице, иначе устройство выйдет из строя.

При выборе УЗИП также необходимо учесть следующие факторы:

  • Значимость защищаемого оборудования;
  • Риск воздействия на объект: местность (город или пригород, равнинная открытая местность), зона с особым риском (деревья, горы, водоем), зона особых воздействий (молниеотвод на расстоянии от здания менее 50 метров, который представляет опасность).

В связи с положением, при котором возникла необходимость установки УЗИП, выбирается подходящий класс (I, II, III).

Также важно учитывать выдерживаемое устройством напряжение. Для устройств I-го класса этот показатель не превышает 4 кВ. Устройство II класса выдерживает уровень напряжения до 2,5 кВ, а устройство III класса до 1,5 кВ.

Еще одним важным параметром при выборе УЗИП является максимальное длительное рабочее напряжение – действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Этот параметр должен быть равен номинальному напряжению в сети. Подробно можно ознакомиться с информацией в стандарте МЭК 61643 – 1, приложение 1.

При подключении УЗИП для защиты оборудования важно учитывать его номинальный постоянный или переменный ток, который может поддаваться нагрузке.

Как подключить УЗИП в частном доме?

Установка УЗИП производится в зависимости от показателя напряжения: 220В (одна фаза) и 380В (три фазы).

Схема подключения может быть направлена на бесперебойность или на безопасность, нужно определить приоритеты. В первом случае может временно отключиться молниезащиты для того, чтобы не допустить перебоя в снабжении потребителей. Во втором же случае недопустимо отключение молниезащиты, даже на несколько секунд, но возможно полное отключение снабжения.

Схема подключения в однофазной сети системы заземления TN-S

При использовании однофазной сети TN-S к УЗИП нужно подключить фазный, нулевой рабочий и нулевой защитный проводник. Фаза и ноль сначала подключаются к соответствующим клеммам, а затем шлейфом к линии оборудования. К защитному проводнику подключается заземляющий проводник. УЗИП устанавливается сразу после вводного автомата. Для облегчения процесса подключения все контакты на устройстве обозначены, поэтому сложностей не должно возникнуть.

Пояснение к схеме: А, В, С – фазы электрической сети, N – рабочий нулевой проводник, PE – защитный нулевой проводник.

СПРАВКА. Рекомендуется использовать предохранители для дополнительной защиты УЗИП, которые ставятся непосредственно на само устройство.

Схема подключения в трехфазной сети системы заземления TN-S

Отличительной особенностью трехфазной сети TN-S от однофазной является то, что от источника питания исходит пять проводников, три фазы, рабочий нулевой и защитный нулевой проводники. К клеммам подключается три фазы и нулевой провод. Пятый защитный проводник подключается к корпусу электроприбора и земле, то есть служит некой перемычкой.

Схема подключения в трехфазной сети системы заземления TN-C

В системе подключения заземления TN-C рабочий и защитный проводник объединены в один провод (PEN), это и является главным отличием от заземления TN-S.

Система TN-C является более простой и уже довольно устаревшей, и распространена в устаревшем жилом фонде. По современным нормам применяется система заземления TN-C-S, в которой находятся по отдельности нулевой рабочий и нулевой защитный проводники.

Переход на более новую систему необходим для того, чтобы избежать поражения электрическим током обслуживающего персонала, и ситуаций с возникновений пожара. Ну и конечно же в системе TN-C-S лучше защита от резких импульсных перенапряжений.

Во всех трех вариантах подключения при перенапряжении ток направляется на землю через кабель заземления или же через общий защитный провод, что не дает импульсу навредить всей линии и оборудованию.

1. Установка УЗИП в электрощитовую с плохим контуром заземления.

При допущении подобной ошибки можно лишиться не только всех электроприборов, но и самой щитовой при первом попадании молнии, так как от защиты с плохим контуром заземления не будет никакого толку, и соответственно никакой защиты.

2. Неправильно выбранное УЗИП, которое не подходит под используемую систему заземления.

Перед покупкой устройства обязательно узнайте какая система заземления используется в вашем доме, а при покупке тщательно ознакомьтесь с его техдокументацией во избежание ошибок.

3. Использование УЗИП не того класса.

Как уже разбирали выше, есть 3 класса устройств защиты от импульсного перенапряжения. Каждый класс соответствует определенной щитовой, и должен устанавливаться согласно правилам и нормам.

4. Установка УЗИП только одного класса.

Часто бывает недостаточно установки УЗИП одного класса для надежной защиты.

5. Перепутан класс устройства и место его назначения.

Бывает и такое, что приборы класса B ставятся в распределительный щит квартиры, приборы класса С в ВРУ здания, а приборы класса D перед электронной аппаратурой.

УЗИП конечно вещь хорошая и нужная, но ее использование в электропитании дома не является обязательным. В случае подключения данного устройства стоит помнить, что оно подбирается индивидуально для каждой системы заземления. Именно по этой причине непосредственно перед покупкой рекомендуется воспользоваться услугами опытного электрика, дабы избежать неприятностей.

Источник: https://odinelectric.ru/equipment/chto-takoe-uzip-shema-podklucheniya

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *